Computational Modeling in the Natural and Social Sciences

This course is designed for future scientists, engineers, researchers, business entrepreneurs, and financial analysts and introduces them to using computational models to understand natural and social phenomena. It draws upon the latest tools and research.

Course Details

(This course is targeted at children entering Grades 8, 9, 10 in 2020-21)


(The course does not require any prior knowledge of programming. It introduces students to block-based and text-based programming.)


Learning or investigating how things work in the natural and social sciences can be difficult given the complexity of the phenomena involved. We cannot look into people's minds or see how exactly a forest fire spreads; nor can we see molecules or electrons or their movements. Another difficulty is that cause and effect are not simple and linear; for example- building roads to reduce traffic congestion can result in more cars coming onto the road increasing congestion. This makes it hard to understand many things in various disciplines  from physics to chemistry, from biology to ecology, from economics to political science, from marketing to investment banking.


The advent of fast computational tools has enabled us to build and analyze more complex models to understand such complex problems. Thus computational models are very important tools of investigation in the disciplines mentioned above. This course is designed for future scientists, engineers, researchers, business entrepreneurs, and financial analysts so that they get introduced to this new way of computationally thinking and understanding natural and social phenomena in the world. The course draws upon the latest tools and research from Northwestern University's Learning Sciences Department, and other organizations in this field. Specifically the course will use NetLogo and NetTango- computational modeling environments, built keeping both middle-school children and researchers in mind.


Students will study various phenomena including how a forest fire spreads, and the motion of an object under free fall through computational models. Through this, they will  engage in scientific inquiry and also understand non-intuitive effects, such as a tipping point. They will also learn how such models are created by looking at the underlying code, and how to perform a systematic research investigation by generating, collecting, visualizing and analyzing data. The course does not require students to write code, while providing students interested in coding, to do so if they wish.


Learn more about our expert course facilitator, Sugat Dabholkar, here.

About Facilitator:

Sugat Dabholkar

Sugat is a doctoral researcher in the Learning Sciences program at Northwestern University, USA. His work involves designing technology-enhanced learning environments to enable scientific thinking, computational thinking, and complex systems thinking. Over the past three years, Sugat has developed several computational agent-based models, many of which have been incorporated into curricular units for high school students. The curricular units he has authored have been used in school settings in the US as well as in India. He has presented his work in several highly prestigious international conferences and co-authored several peer-reviewed journal publications.

Prior to starting his Ph.D. in educational research, Sugat was first a biology researcher and then a science content developer for a multi-national organization in India.